ENONCE

Partie A

On considère la fonction numérique f de la variable réelle x définie sur l'intervalle $[0; +\infty[$ par $f(x) = \sqrt{x}]$ e $^{1-x}$

Elle est dérivable sur l'intervalle] 0; $+\infty$ [. On note f' sa dérivée. On note C la courbe représentative de f dans le plan rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$.

- 1. <u>Démonstration de cours.</u> Déterminer la limite en $+ \infty$ de la fonction $x \to \frac{e^x}{x}$.
- 2. Déterminer la limite de f en $+ \infty$.

(On pourra pour cela justifier et exploiter l'écriture, pour tout x réel strictement positif, $f(x) = \frac{e}{\sqrt{x}} \times \frac{x}{e^x}$.

Interpréter graphiquement le résultat.

- 3. Pour *x* élément de]0; $+\infty$ [, calculer f'(x).
- 4. Déduire des questions précédentes le tableau de variation de f.
- 5. Tracer la courbe C (unité graphique : 2 cm).

Partie B

On considère la suite (u_n) définie pour tout entier naturel n, non nul par $u_n = \int_{n}^{n+1} f(t) dt$.

- 1. Interpréter géométriquement
- 2. Démontrer que, pour tout entier naturel n non nul : $f(n+1) \le u_n \le f(n)$.
- 3. En déduire que la suite (u_n) est décroissante.
- 4. Prouver la convergence de la suite (u_n) et déterminer sa limite.

Partie C

On considère la fonction numérique F de la variable réelle x définie sur [1; + ∞ [par : F (x) = $\int_{1}^{x} f(t) dt$.

- 1. a. Montrer que F est dérivable sur [1 ; $+\infty$ [et calculer F'(x).
- b. En déduire le sens de variation de F.
- 2. a. Démontrer que, pour tout réel t, positif : $t + 2 \ge 2 \sqrt{2} \sqrt{t}$
- b. En déduire que, pour tout x de l'intervalle [1; + ∞ [, F(x) $\le \frac{1}{2\sqrt{2}} \int_1^x (t + 2) e^{1-t} dt$
- c. A l'aide d'une intégration par parties, montrer que, pour tout x appartenant à [1; $+\infty$ [,

$$\int_{1}^{x} (t + 2) e^{1-t} dt = 4 - (x+3) e^{1-x}$$

- d. En déduire que, pour tout x appartenant à [1; + ∞ [, $0 \le F(x) \le \sqrt{2}$
- 3. On note; pour tout entier naturel n non nul; S_n la somme des n-1 premiers termes de la suite. Exprimer S_n à l'aide d'une intégrale.

Montrer que la suite (S_n) converge et donner un encadrement de sa limite.

CORRECTION

Partie A

2.
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \text{ donc } \lim_{x \to +\infty} \frac{x}{e^x} = 0 \text{ de plus } \lim_{x \to +\infty} \frac{e}{\sqrt{x}} = 0 \text{ donc } \lim_{x \to +\infty} f(x) = 0$$

3.
$$f'(x) = \frac{1}{2\sqrt{x}}e^{1-x} + \sqrt{x}(-e^{1-x}) = \frac{1-2x}{2\sqrt{x}}e^{1-x}$$

4.

x	0	$\frac{1}{2}$		+∞
f'(x)	+	0		
f	0	$\sqrt{\frac{e}{2}}$	•	0

Partie B

- f est une fonction positive sur [0; + ∞ [donc u_n mesure l'aire du domaine plan limité par les droites d'équation x = n, x = n + 1, l'axe des abscisses et la courbe de f.
- $n \ge 1$ donc f est décroissante sur [1; + ∞ [donc pour tout t de [n; n+1], $f(n+1) \le f(t) \le f(n)$. les fonctions étant continues, et $n + 1 \ge n$, on a:

offictions etail continues, et
$$n+1 \ge n$$
, off a :

$$f(n+1) \le \int_{n}^{n+1} f(t) dt \le f(n) \operatorname{soit} f(n+1) \le u_n \le f(n).$$

3. Pour tout n non nul, $f(n+1) \le u_n \le f(n)$ donc $f(n+2) \le u_{n+1} \le f(n+1)$.

donc $u_{n+1} \le f(n+1) \le u_n$ donc $u_{n+1} \le u_n$ donc (u_n) est décroissante.

 u_n mesure une aire donc $u_n \ge 0$ de plus (u_n) est décroissante donc (u_n) converge.

$$f(n+1) \le u_n \le f(n)$$
 et $\lim_{n \to +\infty} f(n) = 0$ et $\lim_{n \to +\infty} f(n+1) = 0$

donc d'après le théorème des gendarmes, $\lim u_n = 0$

Partie C

1. a. f est continue sur [0; + ∞ [donc F est la primitive nulle en 1 de f et F'(x) = f(x)

f est positive sur $[0; +\infty[$ donc F est croissante sur $[1; +\infty[$.

2. a.
$$\left(\sqrt{2} - \sqrt{t}\right)^2 = t + 2 - 2\sqrt{2}\sqrt{t}$$

donc
$$t + 2 - 2\sqrt{2}\sqrt{t} \ge 0$$
 donc $t + 2 \ge 2\sqrt{2}\sqrt{t}$

b.
$$t+2 \ge 2 \sqrt{2} \sqrt{t} \text{ donc } \sqrt{t} \le \frac{1}{2\sqrt{2}} (t+2)$$

donc
$$\sqrt{t} e^{1-t} \le \frac{1}{2\sqrt{2}} (t+2) e^{1-t}$$

ces fonctions étant continues sur [1, $+\infty$ [

donc
$$\int_{1}^{x} f(t) dt \le \frac{1}{2\sqrt{2}} \int_{1}^{x} (t+2) e^{1-t} dt$$

c. Soit
$$u'(x) = e^{1-t} \operatorname{donc} u(t) = -e^{1-t}$$

 $v(t) = t + 2 \operatorname{donc} v'(t) = 1$

$$\int_{1}^{x} (t + 2) e^{1-t} dt = \left[-(t+2) e^{1-t} \right]_{1}^{x} - \int_{1}^{x} -e^{1-t} dt$$

$$\int_{1}^{x} (t + 2) e^{1-t} dt = -(x+2) e^{1-x} + 3 - \left[e^{1-t} \right]_{1}^{x}$$

$$\int_{1}^{x} (t + 2) e^{1-t} dt = -(x+2) e^{1-x} + 3 - (e^{1-x} - 1)$$

$$\int_{1}^{x} (t + 2) e^{1-t} dt = 4 - (x+3) e^{1-x}$$

d. f est positive sur $[0; +\infty [$ et $x \ge 1$ donc $0 \le F(x)$ $x \ge 1$ et $e^{1-x} > 0$ donc $4 - (x + 3) e^{1-x} \le 4$

$$x \ge 1$$
 et $e^{1-x} > 0$ donc $4 - (x + 3) e^{1-x} \le 4$

$$\int_{1}^{x} f(t) dt \le \frac{1}{2\sqrt{2}} \int_{1}^{x} (t+2) e^{1-t} dt$$

donc
$$F(x) \le \frac{1}{2\sqrt{2}} [4 - (x+3) e^{1-x}] \le \frac{1}{2\sqrt{2}} \times 4$$

donc
$$0 \le F(x) \le \sqrt{2}$$

3.
$$S_n = \int_1^n f(t) dt$$
 d'après la relation de Chasles

$$S_{n+1} - S_n = u_n$$
 donc $S_{n+1} - S_n \ge 0$ donc (S_n) est croissante

 $S_n = F(n)$ donc $0 \le S_n \le \sqrt{2}$ donc (S_n) est une suite croissante majorée donc convergente.