Partie A

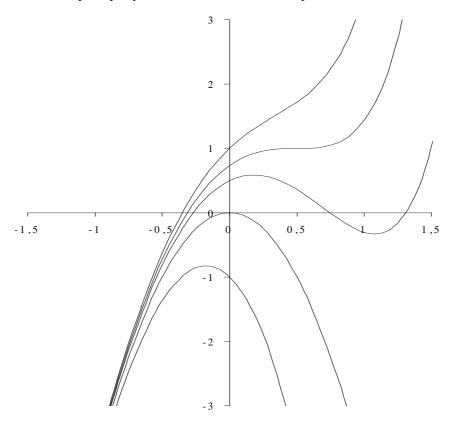
- 1. Soit (E) l'équation différentielle : y' - 2y = 0.
 - Déterminer toutes les solutions de (E)

Soit (E') l'équation différentielle : $y' - 2y = 8x^2 - 8x$

- 2. a. Déterminer une fonction P, polynôme du second degré, solution de (E ').
 - b.Démontrer que f est une solution de (E ') si et seulement si f – P est solution de (E).
 - Déterminer toutes les solutions de (E'). c.

Partie B

m est un réel, on note f_m la fonction définie sur \mathbb{R} par $f_m(x) = m$ e $^{2x} - 4x^2$ et C_m sa courbe représentative dans un repère orthonormal $(O; \vec{i}, \vec{j})$. La figure ci-dessous donne pour quelques valeurs de m les courbes représentatives C_m associées.



L'objet du problème est d'étudier la famille des fonctions f_m ainsi définies.

- 1. La figure ci-dessus semble indiquer que les courbes C_m n'ont pas de points communs.
 - Démontrez que par un point M $(x_0; y_0)$ donné, il passe une courbe C_m et une seule. a.
 - Soit un réel a fixé, exprimer l'ordonnée du point de C_m d'abscisse a en fonction de m. b. Soit h(m) cette ordonnée. Montrer que h est une fonction croissante de m sur \mathbb{R} .
- Vérifiez, pour tout réel x, que : $f'_m(x) = 2 e^{2x} [m 4x e^{-2x}].$ 2. a.
 - Déduisez-en que le signe de $f_m(x)$ est le même que celui de m-4 x e^{-2x} . b.
- Étudiez les variations de la fonction g définie sur \mathbb{R} par $g(x) = 4x e^{-2x}$ et construisez sa courbe représentative Γ . 3. a.
 - b.Déduisez le signe de $f'_m(x)$ de la question précédente.
- Étudiez les variations de f_m selon les valeurs du paramètre m. 4. a.
 - b.Dressez le tableau de variations f_m dans chacun des cas suivants :
 - $m > \frac{2}{e}$; $m = \frac{2}{e}$; $0 < m < \frac{2}{e}$; m = 0; m < 0. Les courbes tracées dans la première partie correspondent à $m = \frac{2}{e}$; m = 0; m = 1; m = -1; m = 0.5.
- 5.

Identifiez ces courbes en justifiant votre choix.

CORRECTION

Partie A

1.
$$f(x) = 20 x e^{-\frac{1}{2}x} + 10 e^{-\frac{1}{2}x}$$

Soit
$$X = \frac{1}{2} x$$
, $\lim_{x \to +\infty} X = +\infty$

$$20 x e^{-\frac{1}{2}x} + 10 e^{-\frac{1}{2}x} = 40 X e^{-X} + 10 e^{-X}$$

$$\lim_{X \to +\infty} X e^{-X} = 0 \text{ et } \lim_{X \to +\infty} e^{-X} = 0$$

$$\lim_{X \to +\infty} X e^{-X} = 0 \text{ et } \lim_{X \to +\infty} e^{-X} = 0$$

donc
$$\lim_{X \to +\infty} 40 \text{ X e}^{-X} + 10 \text{ e}^{-X} = 0$$

donc
$$\lim_{x \to +\infty} f(x) = 0$$

2. La dérivée de e " est u' e " donc :
$$f'(x) = 20 e^{-\frac{1}{2}x} + (20 x + 10) \left(-\frac{1}{2}\right) e^{-\frac{1}{2}x}$$

$$f'(x) = (-10 x + 15) e^{-\frac{1}{2}x}$$

La fonction exponentielle est strictement positive sur \mathbb{R} donc f'(x) a le même signe que -10x + 15

х	0		1,5	+ ∞
f'(x)		+	0	-
f	10		M	0

$$M = f(1,5) = 40 e^{-0.75}$$

Partie B

1.
$$f'(t) = (-10 t + 15) e^{-\frac{1}{2}t} et f(t) = (20 t + 10) e^{-\frac{1}{2}t} donc$$

$$f'(t) + \frac{1}{2}f(t) = (-10t + 15) e^{-\frac{1}{2}t} + \frac{1}{2}(20t + 10) e^{-\frac{1}{2}t}$$

$$f'(t) + \frac{1}{2}f(t) = (-10t + 15 + 10t + 5) e^{-\frac{1}{2}t} \operatorname{donc} f'(t) + \frac{1}{2}f(t) = 20 e^{-\frac{1}{2}t} \operatorname{donc} f \operatorname{est} \operatorname{solution} \operatorname{de}(E)$$

2. a.
$$g$$
 est une solution quelconque de l'équation différentielle (E), définie sur $[0; +\infty[$, donc $g'(t)+\frac{1}{2}g(t)=20$ e $e^{-\frac{1}{2}t}$.

f est solution de (E) donc $f'(t) + \frac{1}{2}f(t) = 20 e^{-\frac{1}{2}t}$.

$$(g-f)'(t) + \frac{1}{2}(g-f)(t) = g'(t) + \frac{1}{2}g(t) - f'(t) - \frac{1}{2}f(t)$$

$$(g-f)'(t) + \frac{1}{2}(g-f)(t) = e^{-\frac{1}{2}t} - e^{-\frac{1}{2}t} \text{ donc } (g-f)'(t) + \frac{1}{2}(g-f)(t) = 0$$

donc g - f est solution, sur $[0; +\infty[$, de l'équation différentielle : (E') $y' + \frac{1}{2}y = 0$.

b. Résoudre l'équation différentielle (E').

(E') a pour solution les fonctions de la forme : $t \to C$ e^{$-\frac{1}{2}t$} donc (g-f)(t) = C e^{$-\frac{1}{2}t$}

$$g(t) = f(t) + Ce^{-\frac{1}{2}t} = (20t + 10 + C)e^{-\frac{1}{2}t}$$

g(0) = 10 donc 10 + C = 10 donc C = 0 donc g(t) = f(t) donc f est l'unique solution de l'équation différentielle (E), définie sur l'intervalle $[0; +\infty[$, qui prend la valeur 10 à l'instant 0.

f est définie continue, strictement croissante sur [0; 1,5], $10 \in f([0; 1,5])$ donc l'équation f(x) = 10 admet une seule solution 0 sur [0; 1,5]

f est définie continue, strictement décroissante sur $[1,5;+\infty[,f([1,5;+\infty[)=]0;f(1,5)];f(1,5)>10$ donc $0\in]0;f(1,5)]$ donc l'équation f(x) = 10 admet une seule solution α sur $[1,5; +\infty[$.

$$f(4,67) > 10$$
 et $f(4,68) < 10$, f est strictement décroissante sur $[1,5; +\infty[$, donc $4,67 \le \alpha \le 4,68]$

Le temps est exprimé en heures. $4,67 \times 60 = 280,2$ et $4,68 \times 60 = 280,8$ donc il faut environ 280 minutes soit 4 h et 40 minutes pour que la température de cette réaction chimique redescende à sa valeur initiale.